首页> 外文OA文献 >The compact root architecture1 gene regulates lignification, flavonoid production, and polar auxin transport in Medicago truncatula
【2h】

The compact root architecture1 gene regulates lignification, flavonoid production, and polar auxin transport in Medicago truncatula

机译:紧凑的根构架1基因调节截叶苜蓿中的木质化,类黄酮生成和极性植物生长素运输

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The root system architecture is crucial to adapt plant growth to changing soil environmental conditions and consequently to maintain crop yield. In addition to root branching through lateral roots, legumes can develop another organ, the nitrogen-fixing nodule, upon a symbiotic bacterial interaction. A mutant, cra1, showing compact root architecture was identified in the model legume Medicago truncatula. cra1 roots were short and thick due to defects in cell elongation, whereas densities of lateral roots and symbiotic nodules were similar to the wild type. Grafting experiments showed that a lengthened life cycle in cra1 was due to the smaller root system and not to the pleiotropic shoot phenotypes observed in the mutant. Analysis of the cra1 transcriptome at a similar early developmental stage revealed few significant changes, mainly related to cell wall metabolism. The most down-regulated gene in the cra1 mutant encodes a Caffeic Acid O-Methyl Transferase, an enzyme involved in lignin biosynthesis; accordingly, whole lignin content was decreased in cra1 roots. This correlated with differential accumulation of specific flavonoids and decreased polar auxin transport in cra1 mutants. Exogenous application of the isoflavone formononetin to wild-type plants mimicked the cra1 root phenotype, whereas decreasing flavonoid content through silencing chalcone synthases restored the polar auxin transport capacity of the cra1 mutant. The CRA1 gene, therefore, may control legume root growth through the regulation of lignin and flavonoid profiles, leading to changes in polar auxin transport.
机译:根系体系结构对于使植物生长适应不断变化的土壤环境条件,从而维持作物产量至关重要。除通过侧根的根分支外,豆类还可以在共生细菌相互作用时发育出另一个器官,即固氮根瘤。在豆科植物紫花苜蓿模型中鉴定出了显示紧密根系结构的突变体cra1。由于细胞伸长缺陷,cra1根短而粗,而侧根和共生结节的密度与野生型相似。嫁接实验表明,cra1的生命周期延长是由于根系较小,而不是突变体中观察到的多效芽表型所致。在类似的早期发育阶段对cra1转录组的分析显示,几乎没有重大变化,主要与细胞壁代谢有关。 cra1突变体中表达最下调的基因编码咖啡酸O-甲基转移酶,一种参与木质素生物合成的酶。因此,cra1根中整个木质素含量降低。这与cra1突变体中特定类黄酮的差异积累和极性生长素转运减少有关。外源异黄酮formononetin应用于野生型植物模仿cra1根表型,而通过沉默查尔酮合酶减少类黄酮含量恢复了cra1突变体的极性植物生长素转运能力。因此,CRA1基因可能通过调节木质素和类黄酮的分布来控制豆类根系的生长,从而导致极性植物生长素的运输发生变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号